viernes, 17 de julio de 2009

termodinamica de la fisica

Termodinámica y mecánica estadística
Artículos principales: Termodinámica y Mecánica estadística

Transferencia de calor por convección.
La termodinámica trata los procesos de transferencia de calor, que es una de las formas de energía y como puede producir un trabajo con ella. En esta área se describe como la materia en cualquiera de sus estados (sólido, líquido, gaseoso) va transformándose. Desde un punto de vista macroscópico de la materia se estudia como ésta reacciona a cambios en su volumen, presión, temperatura entre otros. La termodinámica se basa en cuatro leyes principales: el equilibrio termodinámico (o ley cero), el principio de conservación de la energía (primera ley), el aumento temporal de la entropía (segunda ley) y la imposibilidad del cero absoluto (tercera ley).[9]
Una consecuencia de la termodinámica es lo que hoy se conoce como mecánica estadística. Ésta rama estudia, al igual que la termodinámica, los procesos de transferencia de calor, pero contrario a la anterior desde un punto de vista molecular. La materia como se conoce esta compuesta por moléculas y el conocer el comportamiento de una sola de sus moléculas nos lleva a medidas erróneas. Es por eso que se debe tratar como un conjunto de elementos caóticos o aleatorios, y se utiliza el lenguaje estadístico y consideraciones mecánicas para describir comportamientos macroscópicos de este conjunto molecular microscópico.[10]

Mecánica cuántica

Esquema de una función de onda monoelectrónica u orbital en dos dimensiones.
Artículo principal: Mecánica cuántica
La mecánica cuántica es la rama de la física que trata los sistemas atómicos y subatómicos y sus interacciones con la radiación electromagnética, en términos de cantidades observables. Se basa en la observación de que todas las formas de energía se liberan en unidades discretas o paquetes llamados cuantos. Sorprendentemente, la teoría cuántica sólo permite normalmente cálculos probabilísticos o estadísticos de las características observadas de las partículas elementales, entendidos en términos de funciones de onda. La ecuación de Schrödinger desempeña el papel en la mecánica cuántica que las leyes de Newton y la conservación de la energía hacen en la mecánica clásica. Es decir, la predicción del comportamiento futuro de un sistema dinámico, y es una ecuación de onda en términos de una función de onda la que predice analíticamente la probabilidad precisa de los eventos o resultados.
Según las teorías anteriores de la física clásica, la energía se trataba únicamente como un fenómeno continuo, en tanto que la materia se supone que ocupa una región muy concreta del espacio y que se mueve de manera continua. Según la teoría cuántica, la energía se emite y se absorbe en cantidades discretas y minúsculas. Un paquete individual de energía, llamado cuanto, en algunas situaciones se comporta como una partícula de materia. Por otro lado, se encontró que las partículas exponen algunas propiedades ondulatorias cuando están en movimiento y ya no son vistas como localizadas en una región determinada sino más bien extendidas en cierta medida. La luz u otra radiación emitida o absorbida por un átomo sólo tiene ciertas frecuencias (o longitudes de onda), como puede verse en la línea del espectro asociado al elemento químico representado por tal átomo. La teoría cuántica demuestra que tales frecuencias corresponden a niveles definidos de los cuantos de luz, o fotones, y es el resultado del hecho de que los electrones del átomo sólo pueden tener ciertos valores de energía permitidos. Cuando un electrón pasa de un nivel a permitido a otro, una cantidad de energía es emitida o absorbida cuya frecuencia es directamente proporcional a la diferencia de energía entre los dos niveles.

No hay comentarios:

Publicar un comentario